

Bacteria from homemade kombucha btw

Bacteria MSE 493 Prof. Tiffany Abitbol 2024

What's on the "menu" today?

Main dish: Kimchi and miso

Dessert: Nata de coco

Beverages: Kefir and kombucha

Kimchi

Kombucha

Nata de coco

Probiotics

- Probiotics are live microorganisms
- Claims that they provide health benefits when consumed, e.g. by restoring gut microbiota
- Mixed evidence of efficacy

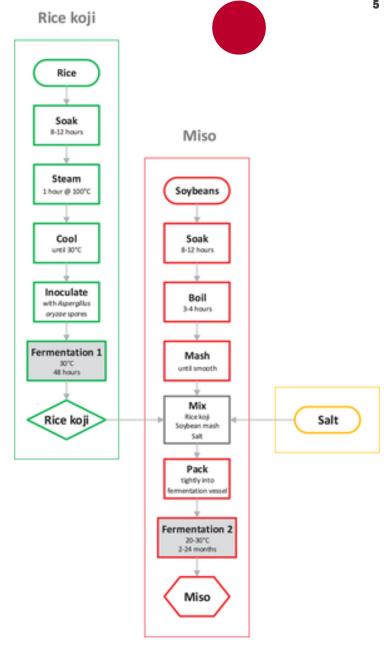
Current Opinion in Food Science

Volume 32, April 2020, Pages 45-49

Probiotic – friend or foe?

<u>Jurica Zucko ¹ ⊠</u>, <u>Antonio Starcevic ¹</u>, <u>Janko Diminic ¹</u>, <u>Damir Oros ¹</u>, Amir M Mortazavian ², Predrag Putnik ¹ ⊠

Highlights


- <u>Probiotics</u> are very popular addition to <u>human</u> <u>nutrition</u> with proven health benefits.
- They represent lucrative segment of food markets.
- Their manufacturing is not sufficiently regulated on worldwide markets.
- The safety is insufficiently tested while their intake might have <u>adverse effects</u>.
- More work is necessary fully to confirm health benefits and safety of probiotics.

Miso

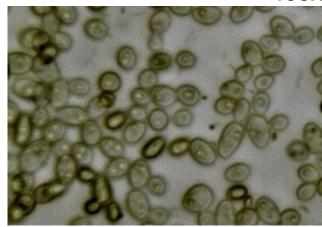
2 stage fermentation:

- Step 1: Create starter culture called kōji (麹) by growing Aspergillus oryzae (fungus) on substrate (rice, soybean); koji produces enzymes that break down protein and starch to smaller and simpler compounds
- Step 2: Fermentation with bacteria and yeast of koji + salt + soybean mash, up to 2 years.
- The microbial community is very important to taste, nutrition, and texture of miso – yet, not much is known.

- Salted and fermented vegetables
- Early stage: Leuconostoc variety is dominant; lower acid tolerance, produces CO₂, lactic acid and acetic acid
- Middle stage: Lactobacillus and other bacteria with higher acid tolerance, continues to produce lactic acid, lowers pH to 4 (prevents growth of pathogenic bacteria)
- Late stage: more Lactobacillus, continued fermentation at low T (refrigerated)
- Fermentation: B12, probiotics, unique flavors and textures

Kefir water

- a mix
 of <u>Lactobacillus</u>, <u>Streptococcus</u>, <u>Pediococcus</u> and <u>Leuconostoc</u> bacteri
 a, with yeasts from <u>Saccharomyces</u>, <u>Candida</u>, <u>Kloeckera</u> and possibly
 others
- <u>Lactobacillus brevis</u> bacteria has been identified as the species responsible for the production of the <u>dextran</u> <u>polysaccharide</u> that forms the "grains"


"grains" - a symbiotic community of bacteria and yeasts (SCOBY) living in translucent "grains" held together by polysaccharide

Kombucha

400x

- Also a symbiotic culture of bacteria and yeast (SCOBY), commonly called "Mother"
- Cellulose pellicle (hydrogel) holds the SCOBY together, not the desired product
- The yeast component generally includes <u>Saccharomyces cerevisiae</u>, along with other species; the bacterial component almost always includes <u>Gluconacetobacter</u> <u>xylinus</u> to <u>oxidize</u> yeastproduced <u>alcohols</u> to <u>acetic acid</u> (and other acids).

Nata de coco

- Bacterial cultures fermented with coconut water
- SCOBY/cellulose pellicle
- Komagataeibacter xylinus produces cellulose, in this case, the desired product

Making Nata de Coco

Bacterial cellulose

Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—a masterpiece of nature's arts. Journal of Materials Science 35, 261–270 (2000). https://doi.org/10.1023/A: 1004775229149

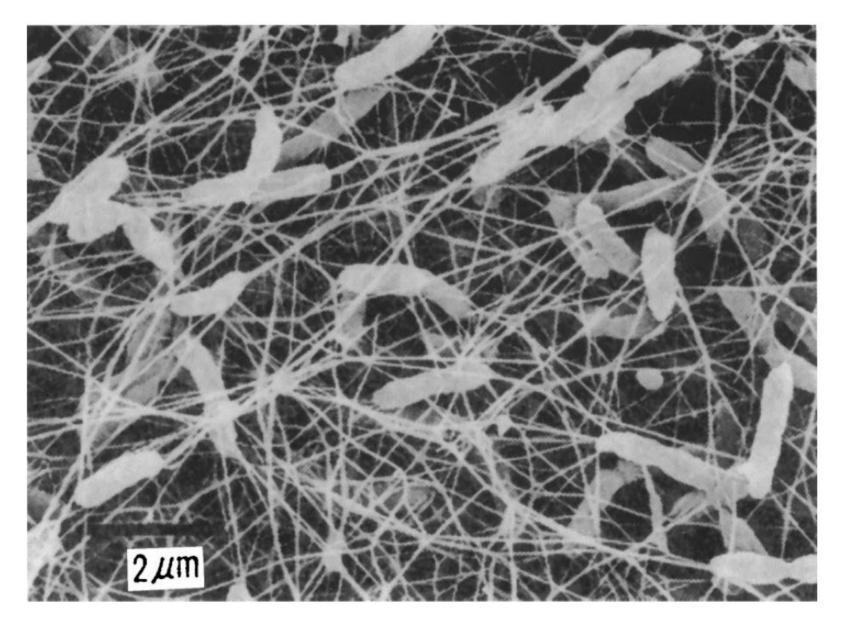
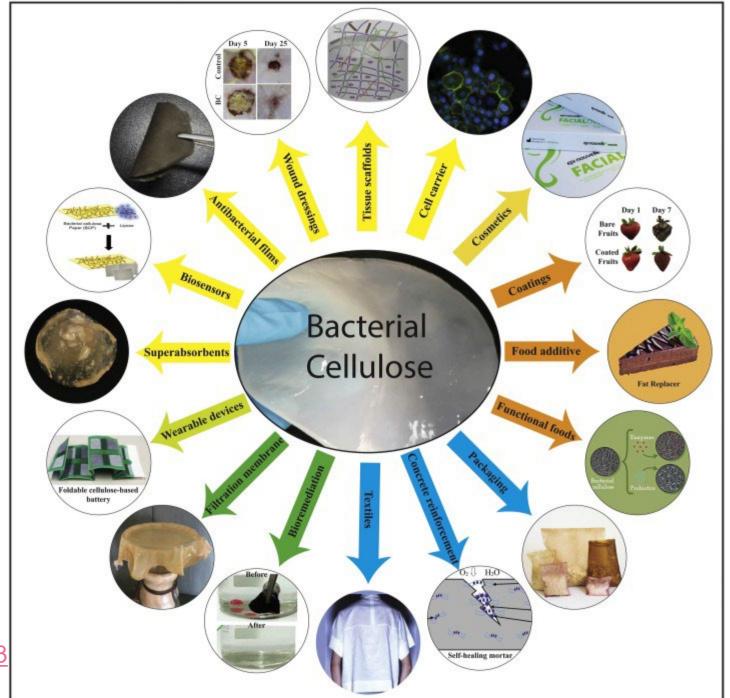
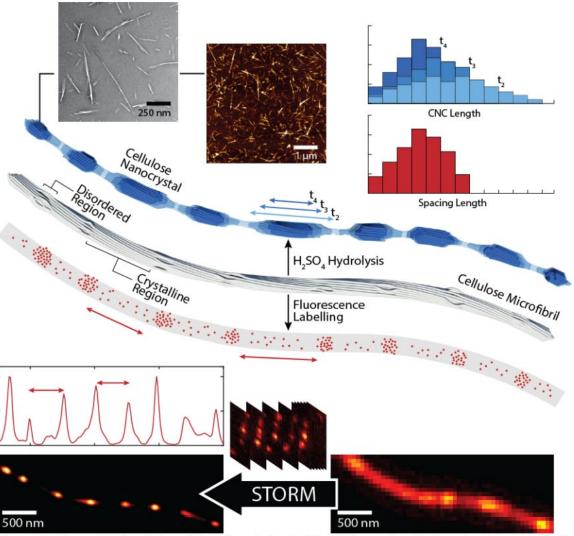



Figure 1 A scanning electron micrograph of freeze-dried surface of bacterial cellulose gel.

Materials science applications of bacterial cellulose

- Biomedicine
- Packaging
- Coatings
- Cosmetics
- Superabsorbents
- Sensors
- Tissue engineering

Bacterial cellulose flashbacks


854 doi:10.1017/S1431927621003354 Microsc. Microanal. 27 (Suppl 1), 2021 © Microscopy Society of America 2021

Visualization of nanostructural dislocations in microcrystalline cellulose fibrils through super-resolution fluorescence microscopy

Mouhanad Babi¹, Anthony Palermo², Tiffany Abitbol³, Ayodele Fatona⁴, Victoria Jarvis⁵, Akanksha Nayak⁴, Emily Cranston⁶ and Jose Moran-Mirabal¹

¹Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, Hamilton, Ontario, Canada, ²University of Toronto, Canada, ³RISE Research Institutes of Sweden, Sweden, ⁴McMaster University, Canada, ⁵McMaster Analytical X-ray Diffraction Facility, Ontario, Canada, ⁶University of British Colombia. United States

 Trying to understand how nature puts together cellulose microfibrils

Figure 2. Figure 2. Visualizing dislocations in bacterial cellulose microfibrils using super-resolution fluorescence microscopy. The fringed-micellar structural model of the cellulose microfibril (grey) postulates the presence of